初一数学点与线教案精选7篇

时间:
couple
分享
下载本文

详细的教案可以让我们的课堂更加丰富有趣,编写教案可以帮助我们合理安排教学时间和资源,提高教学的效率和质量,下面是28好文网小编为您分享的初一数学点与线教案精选7篇,感谢您的参阅。

初一数学点与线教案精选7篇

初一数学点与线教案篇1

教学内容

角的初步认识

第38、39页练习八1、2、3

第三单元

第1课时

教学

目标

1.结合生活情境及操作活动,使学生初步认识角,会判断角,知道角的各部分名称。

2.初步学会用直尺画角。3.培养学生的动手操作能力和团结合作的精神。

教学

准备

教学课件、师生的三角尺、活动角、吸管等

教 学 活 动

教 师

学 生

一、创设情景,引入新课

1、 师播放多媒体:把实物抽象成图形,再把角拉出来。

2、 揭示课题。角的初步认识。

二、联系实际感知角

1. 第38页图校园一角,引导学生观察三角板、大剪刀、球门的框、球场的角等。

2. 在生活中还有许多这样的例子,投影出示例1

3. 小结:这些物品中都有角。

4. 引导学生寻找生活中的角。

5. 师引导学生创造一个角

三、操作感知,探究新知,认识角的组成部分

(1)师变魔术引出活动角。

顶点

学生说出所看到的图形名称,并指出各有几个角。

生观察。

生在教室里找角,同桌互相说一说。

生用手中的纸折一个角、用两只铅笔搭一个角……等。

2、生从自己折的角中探索出角的顶点和边。

教 师

学 生

(2)出示不同的角,你们能指出这些角的顶点和边吗?

小结:一个角有一个顶点和两条边。

(2)画角

五、巩固练习

1.练习第1题判断。要求学生出2和4为什么不是角的原因。

2.练习第2题,数角。

3.练习第3题,比角的大小。

小结:角的大小与边的'长短无关。

6. 出示活动角。

小结:角的大小与两条边的张开的大下有关。

六、拓展、游戏:

1. 用三根小棒可以摆几个角?有几种摆法?

2. 有一个长方形,用剪刀剪一刀,剪去一个角后,还剩几个角?

七、课后小结

这节课我们认识了什么?你有哪些收获?

1.生探索画角的过程。自学。

2.生说画角过程。

3.观看多媒体画角过程。

4.生再次画角。

用自己喜欢的方法比较两个角的大小。

生玩活动角:慢慢地张开,慢慢地合拢。

学生动手做一做,小组合作,说一说。

初一数学点与线教案篇2

一、 学情分析:

在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

二、 课前准备

把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。

三、 教学目标

1、 知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、 能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、 情感与态度目标

通过学生自己探索出法则,让学生获得成功的`喜悦。

四、 教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

五、 教学过程

1、 创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

学生:26米。

教师:能写出算式吗?

学生:……

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

2、 小组探索、归纳法则

(1)教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

a. 2 ×3

2看作向东运动2米,×3看作向原方向运动3次。

结果:向 运动 米

2 ×3=

b. -2 ×3

-2看作向西运动2米,×3看作向原方向运动3次。

结果:向 运动 米

-2 ×3=

c. 2 ×(-3)

2看作向东运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

2 ×(-3)=

d. (-2) ×(-3)

-2看作向西运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

(-2) ×(-3)=

e.被乘数是零或乘数是零,结果是人仍在原处。

(2)学生归纳法则

a.符号:在上述4个式子中,我们只看符号,有什么规律?

(+)×(+)= 同号得

(-)×(+)= 异号得

(+)×(-)= 异号得

(-)×(-)= 同号得

b.积的绝对值等于 。

c.任何数与零相乘,积仍为 。

(3)师生共同用文字叙述有理数乘法法则。

3、 运用法则计算,巩固法则。

(1)教师按课本p75 例1板书,要求学生述说每一步理由。

(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。

(3)学生做 p76 练习1(1)(3),教师评析。

(4)教师引导学生做p75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。

4、 讨论对比,使学生知识系统化。

5、 分层作业,巩固提高。

初一数学点与线教案篇3

学习目标:1、了解用平面直角坐标系来表示地理位置的意义及主要过程,能够用坐标系来描述地理位置.

2、通过学习如何用坐标表示地理位置,培养解决实际问题的能力,发展空间观念

学习重点:利用坐标表示地理位置.

学习难点:建立适当的坐标系表示地理位置

学具准备:坐标纸,三角板

学习过程:

一、学前准备

预习疑难: 。

二、探索与思考

(一)探究用坐标表示地理位置的方法

1、观察 p49图6.2-1

不管是出差办事,还是出去旅游,人们都愿意带上一幅地图,它给人们出行带来了很大方便.如图6.2-1,这是北京市地图的一部分,你知道怎样用坐标表示地理位置吗?

2、根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.

小刚家:出校门向东走150 m,再向北走200 m.

小强家:出校门向西走200 m,再向北走350 m,最后再向东走50 m.

小敏家:出校门向南走100 m,再向东走300 m,最后向南走75 m.

问题1:如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?

解:以 为坐标原点,以正东、正北方向为 轴、 轴正方向建立直角坐标系,取比例尺为1:10000,则小刚家(150,200),小强家( , ),小敏家( , )。

问题2:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?

答: 因小刚、小强、小敏都是从学校出发的,所以选取 为原点,可以很方便地得到他们的坐标.

问题3:图中学校右边的数字“50”表示什么?为什么?如果我们预先规定图中的一个单位长度表示实际距离100m,那么学校右边的数字“50”应该改为多少?

(二)归纳利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程.

(1)建立坐标系,选择一个____________为原点,确定x轴、y轴的`___方向;

(2)根据具体问题确定______________,在坐标轴上标出__________;

(3)在坐标平面内画出这些点,写出各点的_______和各个地点的名称.

四、 应用:

(一)如图,如果以中心广场为坐标原点,以正东方向为x轴正方向,正北方向为y轴正方向,建立直角坐标系,请画出直角坐标系,标出其他景点的位置.

(二)思考:

1、张明、王丽、李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师告诉了他们的位置.

张明:“我这里的坐标是(300,300)”.

王丽:“我这里的坐标是(-100,300)”.

李华:“我在你们东北方向约420米处”.

实际上,他们所说的位置都是正确的.你知道张明和王丽同学是如何在景区示意图上建立的坐标系吗?你理解李华同学所说的“东北方向约420米处”吗?

2、用他们的方法,你能描述公园内其他景点的位置吗?分别画出直角坐标系,标出其他景点的位置.

四、学习体会:

1、本节课你有哪些收获?你还有哪些疑惑?

2、预习时的疑难解决了吗?

五、自我检测:

1.2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点的位置的是( )

a.北纬31° b.东经103.5°

c.浙江省金华市的西北方向上 d.北纬31° ,东经103.5°.

2.如图,是一个8×8的球桌,小明用a球撞击b球,到c 处反弹,再撞击桌边d处,请选择适当的直角坐标系,并用坐标表示各点的位置.

3.根据以下条件画一幅示意图,标出某一公园的各个景点.

菊花园:从中心广场向北走150米,再向东走150米;

湖心亭:从中心广场向西走150米,再向北走100米;

松风亭:从中心广场向西走100米,再向南走50米;

育德泉:从中心广场向北走200米.

4、如图,以公园的湖心亭为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,如果取比例尺为1∶10 000,而且取实际长度100米作为图中的1个单位长度,解答下面的问题:

(1)如果湖心亭在西门的正东方向200米处,请在图中描出西门的位置,并写出它的坐标;

(2)从湖心亭向东走100米,再向北走200米就到游乐场,请在图中描出游乐场的位置,并写出它的坐标;

(3)若博览会的坐标是(3,3),描出它的位置,说明它在湖心亭的什么方向上,与湖心亭的距离大约是多少(精确到米).

(4)若牡丹园的位置是在湖心亭的南偏东70的方向上,你能确定牡丹园的位置吗?如果同时知道牡丹园在博览会的正南方向呢?如果能够,写出它的坐标(精确到0.1).

5、如图,如果点a的横坐标是3,你能求出它的纵坐标吗?你能由此求出点b的坐标吗?

初一数学点与线教案篇4

教学目标

1.使学生正确理解数轴的意义,掌握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法.

教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

难点:正确理解有理数与数轴上点的对应关系.

课堂教学过程设计

一、从学生原有认知结构提出问题

1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?

2.用“射线”能不能表示有理数?为什么?

3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?

待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.

二、讲授新课

让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.

与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):

1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…

提问:我们能不能用这条直线表示任何有理数?(可列举几个数)

在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.

进而提问学生:在数轴上,已知一点p表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么p对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.

三、运用举例变式练习

例1画一个数轴,并在数轴上画出表示下列各数的点:

例2指出数轴上a,b,c,d,e各点分别表示什么数.

课堂练习

示出来.

2.说出下面数轴上a,b,c,d,o,m各点表示什么数?

最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.

四、小结

指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.

五、作业

1.在下面数轴上:

(1)分别指出表示-2,3,-4,0,1各数的点.

(2)a,h,d,e,o各点分别表示什么数?

2.在下面数轴上,a,b,c,d各点分别表示什么数?

3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初一数学点与线教案篇5

【学习目标】

1.掌握有理数的混合运算法则,并能熟练地进行有理数的加、减、乘、除、乘方的混合运算;

2.通过计算过程的反思,获得解决问题的经验,体会在解决问题的过程中与他人合作的重要性;

【学习方法】

自主探究与合作交流相结合。

【学习重难点】

重点:能熟练地按照有理数的'运算顺序进行混合运算

难点:在正确运算的基础上,适当地应用运算律简化运算

【学习过程】

模块一预习反馈

一、学习准备

1.四则(加减乘除)混合运算的顺序:先算_______,再算_______,如有括号,就先算__________.同级运算按照从___往___的顺序依次计算。

2.有理数的运算定律:__________________________________________________.

3.请同学们阅读教材p65—p66,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。

《2.11有理数的混合运算》课后作业

9.用符号“>”“

42+32________2×4×3;

(-3)2+12________2×ok3w_ads("s002");

《2.11有理数的混合运算》同步练习

5、小亮的爸爸在一家合资企业工作,月工资2500元,按规定:其中800元是免税的,其余部分要缴纳个人所得税,应纳税部分又要分为两部分,并按不同税率纳税,即不超过500元的部分按5%的税率;超过500元不超过20xx元的部分则按10%的税率,你能算出小亮的爸爸每月要缴纳个人所得税多少元?

初一数学点与线教案篇6

一、教学内容:

人教版教材五年级上册第五单元多边形的面积整理与复习

二、教学目标:

1、使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。

2、使学生感受数学方法和思想的重要性及其应用的广泛性。体会数学的价值,培养对数学学习的热爱

三、教学重、难点

重点:使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关平面图形面积的实际问题。

难点:引导学生整理多边形面积的推导过程,掌握转化的数学思想方法,建构知识网络。

四、教学准备:多媒体课件,多边形纸模

五、教学步骤与过程

(一)导入复习

师:同学们,我们学过哪些平面图形的面积计算公式?(正方形、长方形、平行四边形、三角形、梯形)

师:这节课我们就来重点整理和复习有关这些多边形的面积的知识。

板书课题:多边形面积计算复习课

(二)回顾整理,建构网络

1.复习平行四边形、三角形、梯形面积公式的`推导过程。

⑴请大家回忆一下:平行四边形、三角形、梯形面积的计算公式是怎样经过平移、旋转等方法转化成我们已经学过的图形,从而推导出它们的面积计算公式的。

⑵根据学生的回答,出示每个公式的推导过程。

六、课堂练习

学生独立计算。指名学生板演,集体订正七、说一说,你学会了什么?从整理图中能看出各种图形之间的关系吗?

七,作业布置:练习十九

板书设计

s=ah÷2

s=abs=ah

s=(a+b)h÷2

初一数学点与线教案篇7

(1)常见的几何体;

(2)构成图形的基本元素——点、线、面及点、线与平面

图形的一些简单性质;点动成线,线动成面,面动成体

(3)棱柱的特征;并注意棱柱和圆柱的联系与区别

(4)长方体、正方体的表面沿某些棱展开的平面图形及圆

柱、圆锥的侧面展开图;

(5)用一个平面去截一个几何体,截面的形状;

(6)物体的三视图,立方体及其简单组合的三视图;

(7)生活中的平面图形。

一。填空:

1、这个几何体的名称是______;它有_____个面组成;它有____个顶点;经过每个顶点有____条边。

2、正方体或长方体是一个立体图形,它是由______个面,______条棱,_____个顶点组成的。

3、在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可)

4、一个棱柱有十个顶点,且所有侧棱的和为30cm,则每条侧棱长为cm.

5、将下面4个图用纸复制下来,然后沿所画线折起来,把折成的立体图形名称写在图的下边横线上:

6、如图是一些相同的正方块构成的立体图形的三视图,则构成这个立体图形的小方块数为。

7、如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了

80,那么这根木料本来的体积是

8、要把一个长方体的表面剪开展成平面图形,至少需要剪开________条棱。

9、如图,截去正方体一角变成一个多面体,这个多面体有____个面,____条棱。

10、若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x=____,y=____.

11、四棱柱按如图粗线剪开一些棱,展成平面图形,请画出平面图来:

12、薄薄的硬币在桌面上转动时,看上去象球,这说明了_____________.

13、右图中,三角形共有个。

14、如图是用边长为1的小正方体摆放成的一个几何体的三视图,这个几何体的表面积为。

第13题主视图俯视图左视图

二:选择题(每题4分,共24分)。

15、桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟。

pqmn

①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,

它终于爬上了桌子………按小狗四次看礼物的顺序,四个画面的顺序为()

a.mnpqb.q

16、以下四个平面图形中,不是正方体的展开图的是()

abcd

17、只有盖的盒子长、宽、高分别为5、5、3cm,如图所示,有一只蚂蚁从a点出

发,沿棱爬行,爬行的路径不许重复,则蚂蚁回到a点时,最多爬行()

a.24cmb.32cmc.34cmd.48cm

18、一个几何体是由若干个相同的正方体组成的,其主视图和左视图

如图所示,则这个几何体最多可由多少个这样的正方体组成()

a.12个b.13个c.14个d.18个

19、把一个正方体截去一个角,剩下的几何体最多有几个面()

a.5个面b.6个面c.7个面d.8个面

20、从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得

到20xx个三角形,则这个多边形的边数为()。

a.20xxb.20xxc.20xxd.20xx

21、下列四个图形折叠后与所得的正方体的各个面上所标数字一致的是()

22、如图(1)是正方体表面积展开图,如果将其折回原来的

正方体图(2)时,与点p重合的两点应该是()

a.s和zb.t和y

c.u和yd.t和v

23、用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()

a.①②④ b.①②③ c.②③④ d.①③④

24、如图是正方体的表面展开图,折叠成正方体后,其中哪两个完全相同()

a.(1)(2)b.(2)(3)c.(3)(4)d.(2)(4)

25、从多边形一个顶点处出发,连接各个顶点得到20xx个三角形,

则这个多边形的边数为()

a.20xxb.20xxc.20xxd.20xx

初一数学点与线教案精选7篇相关文章:

数学宫教案推荐7篇

数学六年级教案最新7篇

小班数学教案优质7篇

二年级数学备课教案7篇

人教版小学数学下册教案7篇

小学教案数学模板范文7篇

幼儿园数学教案7篇

四年级数学下册教案通用7篇

小学数学人教版教案通用7篇

数学教师培训心得精选7篇

初一数学点与线教案精选7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
77338